Electrochemical properties of mixed WC and Pt-black powders

نویسندگان

  • MAJA D. OBRADOVIĆ
  • BILJANA M. BABIĆ
  • ANDRZEJ KOWAL
  • VLADIMIR V. PANIĆ
چکیده

The electrochemical characteristics of a mixture of Pt-black and WC powders and its catalytic activity for methanol and formic acid oxidation were investigated in acid solution. XRD and AFM measurements revealed that the WC powder employed for the investigation was a single-phase material consisting of crystallites/spherical particles of average size of about 50 nm, which were agglomerated into much larger particles. Cyclic voltammetry showed that the WC underwent electrochemical oxidation, producing tungstate species. In the case of the mixed Pt + WC powders, the tungstate species were deposited on the Pt as a thin film of hydrous tungsten oxide. Enhanced hydrogen intercalation in the hydrous tungsten oxide was observed and it was proposed to be promoted in mixed powders by the presence of hydrogen adatoms on bare Pt sites. The determination of Pt surface area in the Pt + WC layer by stripping of underpotentially deposited Cu revealed that the entire Pt surface was accessible for underpotential deposition of Cu. Investigation of the electrochemical oxidation of methanol and formic acid on Pt + WC and pure Pt layers did not indicate electrocatalytic promotion due to the presence of WC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing the synthesis of ultrafine tungsten carbide powders by effective combinations of carbon sources and atmospheres

Article history: Received 9 November 2015 Accepted 25 April 2016 Available online 27 April 2016 Nanostructured WC powders can provide technologically attractive properties due to the fine microstructures obtained after sintering. Either W or WO3 powders are used for the industrial production of WC. In both cases, the contact area between carbon and tungsten precursors has a critical influence o...

متن کامل

Development of spacecraft black thermal control coatings using the synthesized mesoporous Co3O4 pigment

The thermo-optical properties of coated surface are important for spacecraft thermal control coatings which depend on the optical properties and structure of the coating material. These coatings control the temperature by their capability of outer energy absorption and its emission. The optical properties of pigment can be improved if the pigment contains a high fraction of voids in its structu...

متن کامل

Mechanical properties of hot-pressed Al-4.5 wt. % Cu/WC composite

In this study, the elemental powders of aluminum and copper were initially subjected to mechanical alloying using an attrition ball mill under argon atmosphere to produce an Al-4.5 wt% Cu powder alloy. The WC nanoparticles were then added to the powder alloy and milled in a planetary ball mill to explore the role of the WC nanoparticles on the mechanical properties of the fabricated composite p...

متن کامل

تولید درجای کامپوزیت WC-Co در سیستم WO3- Co3O4- C به‌روش احیای کربوترمیک

The aim of this investigation is obtaining WC-Co composite powder from WO3 and Co3O4 by in-situ and carbothermic reduction method using activated carbon as a reducing agent. In this study, cobalt and tungsten oxide powders with 17% carbon (30% more than stoichiometric value) were mixed by ball-milling under atmosphere of argon for 20 hours. Differential Thermal Analysis (DTA) and Therm...

متن کامل

Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation

The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008